Reliability analysis and design of backfill in a cut-and-fill mining method
نویسنده
چکیده
In underground mining, hydraulic backfill materials, such as waste tailings, river sand, and cement, are often used to fill underground mined stopes. In cut-and-fill mining methods with blasthole stoping and delayed backfill, after extraction of adjacent pillars that contain economic minerals, the backfill is often subject to exposure of free standing on at least one side. A key concern for mining engineers is the stability of this immediately-bordered backfill body, because the backfill stability has a significant effect on the dilution/loss rate and the safety of mining operations. It is found that backfill stability is one of the mining subjects most dominated by uncertainty. Rock and backfill properties, environmental conditions, and analytical models are such factors contributing to uncertainty. Conventional methods simplified the problem by considering the uncertain parameters to be deterministic, and accounted for the uncertainties through the use of empirical factors of safety. This paper aims to conduct stability analysis of backfill in underground mining using a probabilistic reliability method, which is an extension of conventional deterministic methods. The parameters of backfill properties are modelled as random variables. In order to determine the failure probability of the backfill in a cut-and-fill mining method of an underground mine in China, a three-dimensional wedge model is set up for the backfill and a corresponding limit state function is established to characterize the backfill stability for the purpose of reliability analysis. The influences of the mean values, coefficients of variation, probability distribution types, and correlation between random variables are carefully investigated through sensitivity analysis. The results obtained give insights into the mechanism of backfill stability and could provide some useful clues on how to choose the right backfill materials.
منابع مشابه
A new classification system for evaluation and prediction of unplanned dilution in cut-and-fill stoping method
Production planning in mineral exploitation should be undertaken to maximize exploited ore at a minimum unplanned dilution. Unplanned dilution reduction is among the ways to enhance the quality of products, and hence, reduce the associated costs, resulting in a higher profit. In this way, firstly, all the parameters contributing to unplanned dilution in underground stopes and specifically the c...
متن کاملApplication of cut set method to reliability evaluation of mine ventilation networks
Providing a fresh and cool airflow in underground mines is one of the main concerns during mining. Destruction of support systems, the presence of undesirable objects in the airway and distortion of airflow are the parameters involved that would result in pressure loss, which would affect the ventilation network. There are a lot of research works about the ventilation network planning that cons...
متن کاملSystem Analysis and Simulation of Narrow Vein Mining Method with Underground Pre-concentration
The application of underground pre-concentration technology to narrow vein mining has the potential to change the entire economics of bulk mining methods when used in narrow vein situations. The rejection of waste at or near the face means that a higher-grade ore can be sent to surface. The waste rock can be reused directly as backfill. Swelling of the muck through blasting means that only 60 t...
متن کاملProbabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation
Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...
متن کاملDEM Analysis of Backfilled Walls Subjected to Active Translation Mode
In this paper, the problem of a retaining wall under active translation mode is investigated numerically. To this end, a series of numerical models is conducted using the discrete element code, PFC2D. The backfill soil is simulated by an assembly of separate cohesionless circular particles. Backfill soil was prepared by pouring soil particles from a specific height under gravity force and givin...
متن کامل